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Van der Waals type of mixing rule for the energy parameter u. together with the mixing rules 
introduced previously for parameters «. and V~ of the BACK equation were employed in eva­
luating excess properties of mixing, Henry's law constant and high pressure vapour-liquid 
equilibria. A comparison with the experimental data reveals that the BACK equation together 
with the suggested mixing rules could provide good prediction of equilibrium properties of mix­
tures of relatively simple molecules. 

The available equations of state may be separated into three groups: (i) cubic equations of the 
van der Waals type. (ii) equations that followed from the exactly derived expressions of the 
perturbation theory of fluids, and (iii) the so-called augmented van der Waals equations of state. 
The first group includes the currently popular equations such as the Redlich-Kwong equation 
as modified by Soavel and the Peng-Robinson equation2 • These equations can yield good re­
presentation of equilibrium properties, such as vapor-liquid equilibrium (VLE) values, and are 
simple to use. However, their abilities for describing volumetric properties are less than desirable. 
It is difficult to modify the expressions of these equations due to their empirical nature. Equations 
of state that follow from the perturbation theory employ precise relationships for the description 
of repulsive forces together with perturbation terms given by contribution of attractive forces. 
While this approach represents an exact way of characterizing the equilibrium behaviour of gases 
and liquids from the first principles (see, for example. ref. 3 ). these equations are not very suitable 
for engineering calculations. The equations of the third group represent a reasonable com­
promise. They are formulated by combining an exact expression for the compressibility factor 
of hard bodies of different shape and size with the contribution of attractive forces expressed 
in the form of a series the constants of which are usually determined from the behaviour of pure 
compounds with simple structures and precisely known PVT and other property values. 

The BACK equation, proposed by Chen and Kreglewski4 - 6 , belongs to the third 
group. It is an augmented equation of the van der Waals type, relatively simple to 
use, and is accurate in representing equilibrium values for compounds of low mole­
cular weights. 

In addition to the mixing rules used by Simnick and co-workers 7 new sets have 
been proposed by BoubIik8 , and Machat and BoubIik9 , to improve systematically 
the mixing rules for parameters in the repulsive term. In these modifications, the 
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30 Boublik, Lu: 

close relationship to the perturbation theory was retained. In this study, mixing rules 
for the attractive term have been considered. 

THEORETICAL 

The BACK equation is of the form 

z = PVjRT= zr + za 

z' = 1 + (30( - 2) y + (30(2 - 30( + 1) y2 - o:2 y 3 

(1 _ y)3 

za = I I nDmn - -, 4 9 ( U )m (VO)n 
m=1 n=1 kT V 

(1) 

(2) 

(3) 

where k is the Boltzmann constant, z is the compressibility factor, and 0( is the para­
meter of non-sphericity; it is equal to unity for spheres, but greater than one for 
other hard convex bodies. The quantity y stands for the packing fraction, and 

y = 0·74048V°jv. (4) 

Chen and Kreglewski expressed the close-packed volume of the hard core molecules 
by means of 

(5) 

and the energy parameter u of Eq. (3) by means of 

(6) 

with '1 = 0 for spheres and '1 > 0 for acentric and polar molecules. 

The BACK equation comprises of 24 Dmn constants, which are generally valid for 
all compounds, and five characteristic parameters for individual substances, ~OO, a, 
u?, '1i> and C. However, Chen and Kreglewski suggested that C be given the value 
of 0·12 for all nonpolar substances but hydrogen. 

For solutions, different mixing rules for yO, 0( and u are available in the literature. 
Simnick and co-workers 7 adopted the following: 

(7) 

(8) 
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Machat and BoubHk9 proposed that 

r:x = V- 1 "x.(r:x.V,°)1/3 "x.(r:x.v.°)2/3 
s s ~111 L...IIJ 

31 

(9) 

(10) 

(11) 

and used Eq. (9) for Us' In these equations, x stands for mole fraction and the sub­
script s stands for solution properties. The combining rules for obtaining the cross 
interaction terms Vi~ and uij adopted by Simnick and co-workers were expressed by 

(12) 
and 

(13) 

where the dimensionless cross-interaction constants, vij and kij were determined 
from mixture properties. 

To conform with the perturbation theory, Eq. (10) should be used for obtaining 
Vso: Eq. (2) after substitution from (10) and (11) is exact up to the second term in the 
special case of hard sphere solutions of spheres with different diameters; it gives also 
quite accurate values of the excess entropy of mixing of model systems of hard 
spheres and prolate spherocylinders. In the work of Machat and Boublik, Eqs (9) 
and (10) were used together with Eq. (13) for Uij' 

The close resemblance of the BACK equation and the equation of state from the 
perturbation theory offers the possibilities of using revised mixing rules, such as 
expressing the attractive term by including explicit contributions of all the possible 
pairs of molecules: 

(14) 

This would be an exact analogy of the perturbation expansion up to the first order 
perturbation term. (The higher-order terms of the perturbation theory, however, 
would be expressed by more complicated functions of mole fractions than Eq. (14).) 

As the quantity Vi~ of Eq. (14) corresponds to O'~j in the perturbation theory 
O'ij = t(O'i + O'j) and O'i is the zero-energy distance, we adopted Eq. (12) for its 
determination, but to determine y., we employed 

(15) 

Eq. (13) was used for the determination of Uij' 
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The use of Eq. (14) instead of Eq. (3) in the calculation demands a considerable 
increase in computer time, it is therefore desirable to select suitable mixing rules for 
Us and V.o to reduce the computing time. 

It is known that for simple mixtures (see e.g. 10) the so-called van der Waals rules, 

(16) 

and 

(17) 

are applicable in theoretical expressions for mixtures. These rules are known to be 
exact for low density region, and useful for solutions of roughly spherical molecules 
at high densities. The quantity e is the minimum energy value of the interaction pair 
potential and (f corresponds to its zero value. 

This is the reason that we used in this study 

(18) 

together with Eq. (13) for Uij and Eq. (10) for Vso, with the adjustable binary parameter 
k ij determined from the properties of a binary mixture. 

APPLICATIONS 

Excess Properties of Binary Mixtures of Liquids 

At low pressures, the determination of the excess properties of mixtures as a function 
of composition represents a suitable characterization of their equilibrium behaviour, 
and only simple calculations are involved. At these conditions the small differences 
in densities of liquids at 0·1 to 0,2 MPa or zero pressure can be neglected, thus all 
the properties can be determined at the P -+ 0 condition. 

During the calculation the volumes of pure components and their mixtures were 
evaluated first from Eq. (1) for z = 0 by a Newton method. Their differences provide. 
immediately the values of VE• These volume values are then used to determine the 
Helmholtz free energy from the expression 

(F - F*)/RT = (!X2 - 1) In (1 - y) + + + LLDmn - -30ey oe 2 Y ( u )m (VO)" 
(1 - y) (1 - y)2 kT V 

(19) 

for pure components and their mixtures. Since the ideal gas free energies F1 and F: 
are considered at volumes V; and v., the corresponding term LXi In (V./Vi) must be 
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subtracted to obtain GE ~ FE. The difference U - U* in the internal energy follows 
from the expression 

U __ -_U_* = (z _ 1)(_T _av_O) + [2aln(1- Y)+ 3y + 2ay ](_T_aa) + 
RT VO aT (1 - y) (1 - y)2 aT 

+ L,mD - - 1 - - - . ( 
U )m(vo)n ( Tau) 

mn kT V u aT 
(20) 

For a solution, the expressions ( - T/VsO) (av.O faT), ( - T oas/oT), and (- T/us) (au.! 
/oT) have, in accord with the mixing rules (10), (11), and (18), the following forms 
for mixtures: 

and 

where 

In the case that Eq. (14) for z· is considered, we have 

U - U* = (zr _ ])[( _ T/VO)(oVo/aT)] + 
RT 

+ [2aln(1 _ y) + 3y + 2ay ] (-Toa/aT) + 
(1 - y) (I _ y)2 

+ L,L,XiXj L,L,Dmn (:;)m (~)" {n( - T/Vi~)(aV;~/oT) + 

(23) 

(24) 

+ m[l + (- T/ujj) (ouij/oT)]} . (25) 

The derivatives of the last term of Eq. (25) could be evaluated from the expressions 
analogous to Eqs (21) and (23). At the limiting condition P --+ 0, 

(26) 
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In the calculation of the excess properties of mixtures, values of Dmn constants as 
given by Chen and Kreglewski4 were used. The parameter values of pure compounds 
used in the calculation are given in Table I. The calculated excess thermodynamic 
properties depend on the k12 values, increasing with their increase. The k12 values 
were adjusted to give the best overall agreement for all three excess functions with 
slightly weight given to HEjRT. A comparison of the calculated excess free energy, 
GE, excess enthalpy, HE and excess volume VE of equimolar solutions with experi­
mental data for the mixing rule set consisting of Eqs (10), (11), and (IB) is given 
in Table II. An attempt was made to perform similar calculations using the other 
set of mixing rules (Eqs (10), (11), and (14», but we obtained, for k12 = 0, syste­
matically higher values of VE than the experimental ones. For example, for the 
equimolar mixture of Ar and Kr, Vc~l = -0,33 while v.;p = -0·52 cm3 mol- 1 • 

By changing the value of k12 in the physically acceptable range (k12 ~ 0), more 
positive values of VE resulted. It was therefore concluded that the latter set of mixing 
rules would not provide a fair description of mixtures. On the other hand, the set 
of rules using Eqs (10), (11), and (1B) yielded good calculated values, especially for 
mixtures of compounds with low molecular weights. The parameters VOO, ex, uo, 
and 11 are generally known with better accuracy for these compounds than those 
with high molecular weights. However, a fair agreement between the calculated and 
experiment values of three excess properties was obtained for the benzene-n-hexane 
system at 298·15 K as shown in Fig. l. 

The proposed approach yielded acceptable values of excess thermodynamic func­
tions for a variety of binary mixtures, as shown in Table II and Fig. 1, using a sirigle 
k12 value for each mixture. The only exception is the system benzene-n-octane, 
where the deviations are large. This disagreement is probably more due to the in­
accuracy of the parameter values of n-octane and the fact that the BACK equation 
does not describe properly properties of systems of larger molecules than due to 
the mixing rules. 

Henry's Law Constant 

Henry's law constant is another thermodynamic quantity that can be easily evaluated 
together with the heat of solution and the partial molar volume of solute from equa­
tions of state of mixtures. As it usually comprises systems formed by one small 
molecule (solute) and one higher molecular compound, it provides information on 
the quality of the equilibrium behaviour description for systems of unlike substances. 

From thermodynamics of fluids (see e.g. Goldmanll) 

(27) 

where Jl.z stands for the chemical potential of solute per one molecule; k is the Boltz-
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TABLE I 

BACK equation parameters 

Voo 
Compounds cm3 mol- 1 IX uO/k, K l1/k, K C Ref. 

Argon 16·290 1·000 150·86 0·00 0·12 5 
Krypton 20·506 1-000 208·32 0·00 0·12 5 
Nitrogen 19·457 1·000 123·53 3·00 0·12 5 
Oxygen 16·062 0·998 152·82 2·02 0·12 10 
Carbon monoxide 19·797 1·004 129·70 3·90 0·12 10 
Carbon dioxide 19·728 1·061 279·00 48·00 0·12 10 
Methane 21-859 1·002 190·29 1·00 0·12 10 
Ethane 31-430 1·022 295·05 19·00 0·12 10 

Propane 42·598 1-041 353·11 34·00 0·12 5 
n-Butane 53·907 1·057 402·46 52·00 0·12 10 
n-Pentane 65·751 1-057 435-83 70·72 0·12 7 
Neopentane 65·518 1·050 409·59 51·28 0·12 7 
n-Hexane 77-228 1-072 468·33 90·11 0·12 7 
n-Heptane 88·351 1·080 491·00 113-77 0·12 7 
n-Octane 96·556 1·098 517·52 134·50 0·12 7 
Cyc1o-hexane 64·772 1·058 522·46 70·72 0·12 7 
Benzene 54·383 1·059 532·12 71·50 0·12 7 
Carbon tetrachloride 57·950 1·050 515·89 64·70 0·12 7 

TABLE II 

Comparison of the calculated and experimental equimolar excess functions 

GE HE VE 

System T,K k ij 
J mol- 1 J mol- 1 cm3 mol- 1 

Ref. 

cal. expo cal. expo cal. expo 

Ar-Kr 115·7 0·0215 99·6 83-9 43·1 43(T= 117) -0·53 -0·52 11 
Ar-N2 83-8 0·003 44·1 34·4 41·1 51 -0·18 -0·18 11 
Ar-02 83·8 0·012 30·7 37·1 59·1 60 0·14 0·14 11 
Ar-CO 83·8 0·015 62-4 56·7 80·2 0·00 0·09 11 
Ar-CH4 91·0 0·027 76·4 75·0 105·4 0·12 0·18 11 
NrCO 83·8 0·012 30·3 23·0 47-4 0·09 0·13 11 
CO-CH4 90·7 0·021 127·4 121·0 105·0 105·0 -0·28 -0·32 11 
C6H6-n-CsH12 298·1 0·024 501-3 422·0 853·2 856·5 0·10 15 
C6H6-n-C6H14 298·1 0·033 454·3 384·0 797·3 800·0 0·66 0·50 16-18 
C6H6-n-C7H16 298·1 0·030 418·8 415·0 825·2 933·2 0·79 0·60 15 
C6H6-n-CgH18 298·1 0·015 118·9 614·0 1 085·2 969·0 1-40 15 
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mann constant I, and g denote liquid and gaseous phases, respectively; superscript ° 
denotes a standard state of pure gas at P = 1 atm, and 00 refers to the infinitely 
dilute condition. Neglecting the small differences in behaviour of solute in the gaseous 
phase at P = 1 atm from that of an ideal gas, and the difference in densities of solvent 
at P = 1 and P -+ 0, we can write 

(28) 

The second term of the right-hand side follows from the derivative of (F - F*)jkT 
with respect to the number of molecules N. 

From Eq. (19) one can obtain 

In Roo = In (RTfVd + (FO - F*)jRT + 

+ [2Cdn (1 - y) + 3y + 2cxy ] CPoo + (zr - 1)(1 + 1/1",) + 
(1 - y) (1 _ y)2 

+ LLDmn (kUT r (~y + LLDmn (:T r (~r [mvoo + n(1 + 1/1(0)]' (29) 

VI is the partial molar volume of the solvent at X2 -+ 0; IX, y, FO - F*, z, u, and VO 

30 

GE/RT 

H7RT 

0·5 

FIG. 1 

Comparison of calculated and experimental 
excess properties of the benzene-n-hexane 
system at 298·15 K (full lines fit the experi­
mental points, interrupted curves - calculat­
ed 1 VE, cm3 mol-I; ref. 18 ; 2 102.GEjRT, 
ref. 17; 3 102.HEjRT, ref. 16) 
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are all properties of the mixture at X2 - 0, whereas cp,X» 1/100' and Voo are defined by 

CPoo = [(LN;) a~ ] 
2 xz .... o 

1/100 = [(LN;/V.O) (aV.o/aN2 )]xz .... o 

and 

Voo = [(LNdu.)(au./aN2)]"z .... o· 

For the above mentioned set of mixing rules (Eqs (10), (11), and (18» 

1/100 = (Vf!V~) - 1 

and 

(30) 

(31) 

(32) 

(33) 

(34) 

where U12 and V~2 are given by Eqs (13) and (12), respectively, but with V;j = 0. 
Differentiating In H 00 with respect to pressure yields the partial molar volume of 
the solute in the given solvent at x 2 - 0, 

It follows from Eq. (29) that, 

where 

(V2/RT)oo = Pd1 + (zr - 1) + (1 + 1/100) y[(3(X + 1) + 
+ (6(X2 - 2)y + (-3(X2 + l)y2]/(1 _ y)4 + 

+ CPooy[3 + (6(X -.3) y - 2(Xy2]/(1 _ y)3 + 

( 
U )m (vo)n + LnDmn kT V [1 + mvoo + n(1 + CPoo)]} , (37) 

(38) 

The relationship for the heat of solution, !1H 00' is more complicated, as both the 
system variables and the derivatives depend on temperature. The derivative of 
In H 00 with respect to temperature was determined numerically. 
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With the inclusion of one adjustable parameter, kI2' the experimental value of 
H 00 can be easily reproduced at the given temperature. A more demanding task is to 
obtain proper H 00 values at different temperatures. Calculation of H 00 was carried 
out for systems of methane, ethane, propane and carbon dioxide in butane and 
methane and nitrogen in n-hexane in the temperature ranges considered by Prausnitz 
and Chueh12 • The calculated results are presented in Figs 2 and 3. Good agreement 
between the calculated values and those obtained from the correlation of Prausnitz 
and Chueh was observed for the majority of the systems. 

A comparison of the calculated and experimental values of Hex" partial molar 
volume V2 and the heat of solution AH CD at infinite dilution is presented in Table III. 
In the calculation, one k12 value was used to determine the three properties for each 
binary system, but its values were adjusted to yield approximate agreement between 
the calculated and experimental H 00 values. The calculation yielded consistently 
higher values of AH 00 and V2 , and this trait was more pronounced for systems 
(;ontaining benzene. It is worthy to note that this calculation yielded higher V2 

values than experimental ones, whereas the majority of theories (see Handa and 
Benson13 ) underestimate it. 

High Pressure Vapor-Liquid Equilibria 

One of the most important applications of equations of state is their use for de­
scribing high pressure vapor-liquid equilibria. The BACK equation was recently 
applied for this purpose (MacMt and BoubliklO) using Eqs (9), (10), (11), and (13). 
Although a fair accord with experimental values was obtained for mixtures consisting 
of simple compounds, large deviations were obtained for systems containing carbon 
dioxide and higher n-alkanes. For this reason, a series of carbon dioxide-n-alkane 
systems was studied using the van der Waals mixing rule for us. In the process of 
calculation, the equilibrium pressure P was determined from Eq. (1) together with 
Eqs (2) and (3). The fugacity coefficient of a component i was evaluated from 

In <Pi 

with 

= (FO - F*)/RT + [20( In (1 - y) + -~ + 20(y ] 4>i + 
(1 - y) (1 - y)2 

(u )m (vo)n + (zr - 1)(1 + I/Ii) + 2.:2.: Dmn k~ ; + 

(u )m (vo)n + LLDmn k~ ; [mvi + n(l + I/Ii)] - In z 

I/Ii = VNV.o - 1 

Vi = 2[(LXkUikVi~)/(UsVsO) - 1] - I/Ii 

(39) 

(40) 

(41) 
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TABLE III 

Comparison of the calculated Henry's law constant, H 00' the solution heat ~H 00 and the partial 
molar volume, V2 at infinite dilution with the experimental data at 298·15 K (refs13,19) 

H oo ' MPa ~Hoo V2 H oo ' MPa ~Hoo V2 

System kl2 
J mol- 1 cm3 mol- 1 J mol- 1 cm3 mol- 1 

Calculated 

C6 H6-Ar 0'24 115-4 4'69 
C6 H6-N2 0'23 231'9 7-88 
C6 H 6-OZ 0'26 120'7 4'83 
C6 H6-CH4 0·12 50'7 1-69 
C6 H6-C02 0·16 10'6 -6'65 
CCI4-Ar 0'22 74'8 0'69 
CCI4-N2 0'23 156'6 3'78 
CCI4 -Oz 0'24 78'2 0'83 
CCI4-CH4 0·12 37'0 -1-84 
CCI4-C02 0'16 8'7 -9'18 

20 

~. 
H .. 

10 ~ 

~ 
300 350 

T 
400 

FIG. 2 

Dependence of Henry's law constant H 00' 

MPa, of methane, ethane, propane, and car­
bon dioxide in butane on temperature. (T, K; 
points - recalculated values from the cor­
relation of Prausnitz and Chueh12; curves -
calculated) 

Collection Czechoslovok Chern. Commun. [Vol. 52) (1987) 

Experimental 

51'2 115'0 1'24 44'6 
58'4 227-2 4'25 52'6 
51'0 124'1 1'71 46·1 
59'0 48'0 -1'28 54'4 
51'3 10'4 -9'31 47-6 
49'3 75'0 -0'43 44'0 
57'0 156'4 2'36 53'1 
49'1 84'4 0'03 45'2 
57-8 35'3 -2-99 52'3 
49'4 9'6 47'9 

60 

H .. 

30 

~ 

10 

300 380 T 460 

FIG. 3 

Dependence of Henry's law constants, H 00' 

MPa, of methane and nitrogen in n-hexane 
on temperature (T, K; points - recalculated 
values from the correlation of Prausnitz 
and Chueh12 : curves - calculated) 
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and 

<Pi = IXs[(IXYiO)1/3/IXk(lXkV~)1/3 + 
+ (lXyn2/3/IXk(lXkVkO)2/3 - 2 - l/Ia . 

Boublik,Lu: 

(42) 

At the condition of infinite dilution, X2 -> 0, Eqs (40)-(42) reduce to Eqs (33)-(35). 
A bubble-point calculation was performed and results obtained for the carbon 

dioxide-n-alkane systems at several arbitrarily selected temperatures are sum­
marized in Table IV. The k12 values were obtained by an optimization procedure 
with the objective function given by the squares of relative deviations in pressure 
and vapor phase mole fraction. For comparison, the results obtained from the 
Peng-Robinson equation of state and the values obtained using the old mixing rule 
for u (Eq. (9) instead of Eq. (18)) are included in Table IV. The present set of mixing 
and combining rules yielded better results than the older set, especially for systems 
containing higher members of the n-alkane. The description of VLE values by means 
of the BACK equation is as good as that from the empirical Peng-Robinson equa­
tion. 

In their attempt to describe VLE values for systems such as methane-carbon 
dioxide, Kreglewski and HaII14 found it necessary to introduce a semi-empirical 
correction for the vanishing ordering effect. This correction was not required in the 
present calulation as shown in Fig. 4, in which the calculated and experimental 

MPa 

o 0-5 10 

FIG. 4 

Vapor-liquid equilibria in the methane­
-carbon dioxide system at four isothermal 
conditions 1 219'6, 2 230, 3 250, 4 270 K 
(refs see Table IV) 
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values for the methane-carbon dioxide system at several temperatures are compared. 
With the exception of VLE values at the highest temperature considered, excellent 
agreement was obtained. In passing, we notice that the result of Kreglewski and 
Hall for the same temperature indicated similar disagreement. 

We can thus conclude that the BACK equation, an augmented van der Waals equa­
tion, makes it possible to calculate several thermodynamic properties of liquids with 
good accuracy. The main advantage of this type of equation over an empirical equation 
is the possibility of systematic improvement of the equation by considering the exact 
results of statistical thermodynamics of fluids and mixtures. For example, the ex­
pression of Eq. (2) could be modified by a three-term expression (see Boublik3 ) 

involving mean radius and surface area parameters. 

Another advantage of this type of equations is their versatility. Enthalpy and 
volume of mixtures can be predicted without modifying the mixing rules. 

The BACK equation yields sufficiently accurate results for the low molecular 
substances, for which "van der Waals" mixing rule is adequate. With the increase 
of size and with more complex shape of molecules results become consequently 
worse. In such cases, a good fit cannot be obtained by simple variation of k 12 • 

An introduction of more appropriate characterization of interaction forces of mole­
cules differing in size, shape and electrostatic moments would be required. 

The authors are indebted to the Natural Sciences and Engineering Research Council of Canada 
for financial support. 
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